Newton’s proof of Kepler’s second law

ANDREW JOBBINGS

www.arbelos.co.uk

22 April 2004

Kepler’s second law A line joining a planet and the sun sweeps out equal areas during equal intervals of time.

Proof (Newton) Suppose that in equal time intervals a particle moves from P to Q to R under a central force directed towards O; then the acceleration at Q is in direction QO.

Choose the unit of time so that \overrightarrow{PQ} represents the velocity from P to Q. Then \overrightarrow{QR} represents the velocity from Q to R.

Construct $\overrightarrow{QT} = \overrightarrow{PQ}$. Then triangle QTR is the vector triangle relating the velocities and acceleration at Q, with \overrightarrow{TR} representing the acceleration. Hence TR is parallel to QO.

Considering areas of triangles,

\[\triangle P Q O = \triangle Q T O \text{ (equal base, same height)} \]
\[= \triangle Q R O \text{ (same base, equal height)} \]

and hence equal areas are swept out in equal times.

\[\blacksquare \]