Lune
Triangle
Areas I
Areas II
Measure all angles in radians.

Let the radius of the sphere be R, so that the area of the sphere is $4\pi R^2$.
Measure all angles in radians.

Let the radius of the sphere be R, so that the area of the sphere is $4\pi R^2$.

When the angle of a lune is λ then

\[
\text{lune area} : \text{sphere area} = \lambda : 2\pi,
\]

which means that

\[
\text{lune area} = 2\lambda R^2.
\]
Measure all angles in radians.

Let the radius of the sphere be R, so that the area of the sphere is $4\pi R^2$.

When the angle of a lune is λ then

$$\text{lune area} : \text{sphere area} = \lambda : 2\pi,$$

which means that

$$\text{lune area} = 2\lambda R^2.$$

Suppose the spherical triangle has area T. Then

$$\text{sphere area} = 2(\text{red lune area}) + 2(\text{green lune area}) + 2(\text{blue lune area}) - 4T.$$
Measure all angles in radians.

Let the radius of the sphere be \(R \), so that the area of the sphere is \(4\pi R^2 \).

When the angle of a lune is \(\lambda \) then

\[
\text{lune area} : \text{sphere area} = \lambda : 2\pi,
\]

which means that

\[
\text{lune area} = 2\lambda R^2.
\]

Suppose the spherical triangle has area \(T \). Then

\[
\text{sphere area} = 2(\text{red lune area}) + 2(\text{green lune area}) + 2(\text{blue lune area}) - 4T.
\]

Let the spherical triangle have angles \(r \), \(g \) and \(b \). From the results above we get

\[
T = (r + g + b - \pi)R^2,
\]

a result sometimes called \textit{Girard’s theorem}.

The quantity \(r + g + b - \pi \) is the \textit{spherical excess} of the triangle.